If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x)(25x^+1)=625
We move all terms to the left:
(5x)(25x^+1)-(625)=0
We multiply parentheses
125x^2+5x-625=0
a = 125; b = 5; c = -625;
Δ = b2-4ac
Δ = 52-4·125·(-625)
Δ = 312525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{312525}=\sqrt{225*1389}=\sqrt{225}*\sqrt{1389}=15\sqrt{1389}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15\sqrt{1389}}{2*125}=\frac{-5-15\sqrt{1389}}{250} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15\sqrt{1389}}{2*125}=\frac{-5+15\sqrt{1389}}{250} $
| (5x)25x2+1)=625 | | -2(3t)+3=-3t5t-10 | | 7x^2+5x=5x^2+13x+13 | | 12*11*x=2244 | | 6x^-37x-35=0 | | 180=42+x+(138-x) | | (138-x)+42=180 | | 2^(x-1)*4^(x+1)/8^(x-1)=64 | | 0=-3x3+12x2+40x | | 0=-3x2+12x+40 | | -6(w+8)=8w-34 | | 0.25=0.28x | | 3.2x(-2.1)+5.8=-0.5x() | | (3x+7)+(x+19)=180 | | c-23/5=2c+5/7 | | t-6=2/3 | | 7q-1=90 | | 8s+108=180 | | 8s+6s-8=90 | | 6a+66=180 | | 6z+78=180 | | x+.0825x=39565.15 | | 8z-40=-32 | | 4w+8=6w-4.w | | 7w=78 | | 6(2x-1)-4=8 | | -13+2x=2x-4 | | 12=6+w/2 | | 3y-3=-24 | | x=2+3/23 | | 83+61+(4x+16)=180 | | 65+36+(5x+14)=180 |